The duality principle for Osserman algebraic curvature tensors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Osserman Algebraic Curvature Tensors and Clifford Families

We use methods of algebraic topology to study the eigenvalue structure of a complex Osserman algebraic curvature tensor. We classify the algebraic curvature tensors which are both Osserman and complex Osserman in all but a finite number of exceptional dimensions.

متن کامل

Jordan Szabó Algebraic Covariant Derivative Curvature Tensors

We show that if R is a Jordan Szabó algebraic covariant derivative curvature tensor on a vector space of signature (p, q), where q ≡ 1 mod 2 and p < q or q ≡ 2 mod 4 and p < q − 1, then R = 0. This algebraic result yields an elementary proof of the geometrical fact that any pointwise totally isotropic pseudo-Riemannian manifold with such a signature (p, q) is locally symmetric.

متن کامل

Kernels of Canonical Algebraic Curvature Tensors

In this paper, we generalize a result on the possible dimensions of the kernel of a linear combination of a particular type of canonical algebraic curvature tensors. We then introduce a new framework for viewing canonical algebraic curvature tensors, using the wedge product, which allows us to give shorter and more transparent proofs of some basic facts about these tensors.

متن کامل

Methods for the construction of generators of algebraic curvature tensors

We demonstrate the use of several tools from Algebraic Combinatorics such as Young tableaux, symmetry operators, the Littlewood-Richardson rule and discrete Fourier transforms of symmetric groups in investigations of algebraic curvature tensors. In [10, 12, 13] we constructed and investigated generators of algebraic curvature tensors and algebraic covariant derivative curvature tensors. These i...

متن کامل

On the Structure Groups of Decomposable Algebraic Curvature Tensors

This paper examines the action of GLN (R) on decomposable algebraic curvature tensors. The main result is that the structure group of a decomposable algebraic curvature tensor can only permute the subspaces into which the tensor decomposes: if the tensor decomposes into tensors Ri on Vi where V = ⊕k i=1 Vi, then for any matrix A in the structure group there exists a permutation σ such that A : ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2016.04.003